隨著電力電子器件的飛速發展和可再生能源的大量需求,基于電壓源換流器的直 流輸電和配電技術快速發展。柔性中壓直流(Medium-Voltage DC,MVDC)配電網具有線路損 耗小、供電、電能質量優等特點,在分布式電源并網、構筑城市直流電網等方面優勢 顯著。由于模塊化多電平換流器(modular multilevel converter,MMC)開關頻率低,損耗小,動靜態均壓優,因而在柔性直流工程中更受青睞。當前基于MMC的直流工程多采用自然 雙極和小電流接地方式,在深圳試點的±10kV直流配電工程采用換流變閥側高阻接地方式。









現有技術綜合利用故障發生時首先達到故障電流門檻值的極性、兩極故障電流到 達門檻值的時間差和電流隨時間的變化率三種判據來檢測區內外故障,方法過于復雜。現有技術構建零模序網識別線路電容參數,能夠有效地判別出故障的饋線,但難 以定位故障饋線上的故障區段。現有技術利用小波變換進行多尺度分析,利用暫態量的高低頻能量差異構造判 據,能正確判斷故障,但小波變換的計算結果易受到小波基選取以及噪聲的影響。

饋線的種類
超短波段的傳輸線一般有兩種:平行雙線傳輸線和同軸電纜傳輸線;微波波段的傳輸線有同軸電纜傳輸線、波導和微帶。
平行雙線傳輸線由兩根平行的導線組成,它是對稱式或平衡式的傳輸線,這種饋線損耗大,不能用于UHF頻段。
同軸電纜傳輸線的兩根導線分別為芯線和屏蔽銅網,因銅網接地,兩根導體對地不對稱,因此叫做不對稱式或不平衡式傳輸線。
同軸電纜工作頻率范圍寬,損耗小,對靜電耦合有一定的屏蔽作用,但對磁場的干擾卻無能為力。
使用時切忌與有強電流的線路并行走向,也不能靠近低頻信號線路。